Spectral inclusion and pollution for a class of dissipative perturbations
نویسندگان
چکیده
Spectral inclusion and spectral pollution results are proved for sequences of linear operators the form T0 + i?sn on a Hilbert space, where sn is strongly convergent to identity operator ? > 0. We work in both an abstract setting more concrete Sturm–Liouville framework. The provide rigorous justification method computing eigenvalues gaps.
منابع مشابه
the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولA numerical technique for solving a class of 2D variational problems using Legendre spectral method
An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...
متن کاملDissipative Perturbations of 3d Hamiltonian Systems
In this article we present some results concerning natural dissipative perturbations of 3d Hamiltonian systems. Given a Hamiltonian system ẋ = PdH, and a Casimir function S, we construct a symmetric covariant tensor g, so that the modified (so-called “metriplectic”) system ẋ = PdH + gdS satisfies the following conditions: dH is a null vector for g, and dS(gdS) ≤ 0. Along solutions to a dynamica...
متن کاملNonlinear perturbations for dissipative and interacting relativistic fluids
We develop a covariant formalism to study nonlinear perturbations of dissipative and interacting relativistic fluids. We derive nonlinear evolution equations for various covectors defined as linear combinations of the spatial gradients of the local number of e-folds and of some scalar quantities characterizing the fluid, such as the energy density or the particle number density. For interacting...
متن کاملThermodynamic, spectral and antimicrobial activity of inclusion complexes of acridone and its oxime with β-cyclodextrin
One of the methods to enhance bio-accessibility of drugs like Acridone and its oxime is toform inclusion complexes with β-cyclodextrin. The formation of such complexes has beenconfirmed by changes in spectral characteristics and melting point data. The aqueous phasesolubility studies reveal 1:1 stoichiometry between the compound and, β-cyclodextrin. The studyof thermodynamic parameters like ΔG,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2021
ISSN: ['0022-2488', '1527-2427', '1089-7658']
DOI: https://doi.org/10.1063/5.0028440